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ABSTRACT 

Twenty-sLx structural models, consisting of hemispherical 
shells bound by ring-stiffened cylinders designed to provide 
ideal edge conditions, were machined from two aluminum alloys 
and collapsed under hydrostatic pressure. The models were 
designed to investigate both elastic and inelastic failures. 
The collapse pressure of those models which failed elastically 
could not be predicted by either the linear theory of Zoelly 
or any of the available large-deflection theories. When an 
empirical formula based on the observed elastic collapse 
pressures was used, the collapse pressure of those models 
which failed at stress levels above the proportional limit 
of the material could be predicted with reasonable accuracy. 
The agreement between the experimental values and those obtained 
from this empirical formula is within + 2 and — 12 percent. 

INTRODUCTION 

Underwater vehicles with positive buoyancy will be used at increasingly 

greater depths in the future. A strong possibility exists that these vehicles 

will utilize spherical shells either as the main pressure hull or, more likely, 

to close off the ends of basically cylindrical or spheroidal hulls. 

Adequate design procedures do not exist for spherical shells.1 Theo¬ 

retical work carried out thus far has had little design value for underwater 

vehicles, since the majority of the efforts have been directed toward shallow 

spherical caps. In practice, the designer is likely to encounter deep or 

possibly complete spherical shells. The small amount of experimental data 

on the strength of deep or complete spherical shells found in the literature 

were obtained from shells much thinner than those of interest to the submarine 

designer. Since most materials considered promising for deep-depth application, 

such as high-strength steel and titanium and aluminum alloy, exhibit strain¬ 

hardening characteristics, knowledge of both the elastic and inelastic behavior 

of full or deep spherical shells made of such materials is required. 

In an effort to shed light on the actual behavior of deep spherical 

shells, 26 small structural models were machined from two aluminum alloys 

and tested under external hydrostatic pressure. Because of the difficulty 

References are listed on page 25. 



involved in constructing complete spherical shells vdth a high degree of 

accuracy, the models consisted of hemispheres bounded by stiffened cylinders 

designed to provide ideal membrane edge conditions. Models were designed to 

collapse in both the elastic and the inelastic ranges. This report describes 

the design, machining, test procedures, and results, and presents an empirical 

method for calculating the collapse pressures for machined spherical shells 

not affected by boundary conditions. 

BACKGROUND 

The small deflection theory for the elastic buckling of spherical shells 

was first developed by Zoelly in 1915 and summarized by Timoshenko.^ If the 

average stress ^ of a spherical shell at the critical buckling pressure p^ 
is defined by 

Pi« 
°i=^r ^ 

(where R is the radius to the mean surface of the shell and h is the shell 

thickness), the classical linear theory for the buckling stress may be 
expressed by 

E h/R 
al=>. . Í2] 

f(^) 
where E is Young’s modulus and u is Poisson’s ratio for the shell material, 

lor Poisson’s ratio oí 0.3, the expression for the classical critical buckling 

pressure of a spherical shell becomes 

PX = 1.21 E (h/R)2 [3] 

Unfortunately, the very limited experimental data existing for deep 

spherical shells do not support the linear theory. Sechler and Bollay1 

immersed a brass hemispherical shell in a mercury bath and obtained an 

elastic-buckling load of about one fourth that predicted by the classical 

theory of Zoelly. Klöppel and Jungbluth obtained similar results for 
deep spherical steel shells. 
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Various investigators have attempted to lower the theoretical elastic- 

buckling load of spherical shells to support experimental results. Von Karman 

and Tsien investigated the nonlinear buckling equations and the associated 

postbuckling equilibrium configurations. They determined the minimum load 

required to keep an elastic shell in the postbuckle position of finite defor¬ 

mations and offered this minimum value as the "lower" buckling load. Further¬ 

more, they suggested that this lower buckling load would correspond more 

closely to the experimental values obtained from tests of spherical shells 

with inperfections and tolerances encountered in normal engineering practice, 

whereas the "upper" buckling load of Zoelly could be approached experimentally 

only by exercising extreme caution in the manufacturing and testing of the 

specimen. Their lower buckling pressure p2 may be expressed as 

p2 = 0.366 E (h/R)2 r n 
[4] 

This buckling pressure is in much better agreement with the existing experi¬ 

ments. Friedrichs demonstrated, however, that relaxing several of the arbi¬ 

trary assumptions made by Von Kaiman and Tsien affects the results appreciably. 

In addition, Murray and Wright have shown recently that a more exact mathe¬ 

matical solution to the equations of equilibrium of Von Karman and Tsien3 

gives considerably higher collapse pressures. Tsien7 later developed an 

"energy criterion of jump" which predicts elastic buckling pressures under 

dead-weight load conditions of about one fourth those obtained from the 
classical theory. 

Bijlaard, Gerard, and Lunchick3^ have developed solutions for the 

inelastic buckling of spherical shells. Each followed the same basic 

approach of applying a plasticity reduction factor to the classical linear 

theory. Inadequate experimental data are available with which to check the 

validity of their work. It appears reasonable to assume, however, that an 

understanding of the elastic-buckling phenomenon would simplify the task 

of determining the inelastic strength of deep spherical shells. 

Results of several simple tests on plastic spherical shells under uniform 

hydrostatic pressure are presented in the Appendix. These results indicate 

that the volume of the pressure vessel does not affect the experimental 

collapse strength, as implied by Tsien.7 This leads to the speculation 
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that the observed difference between eaperúnent and the classical theory 

»ust be the result of initial imperfections, residual stresses, and adverse 

boundary conditions. If this hypothesis is correct, the experimental collapse 

strength of near perfect, initially stress-free spherical shells should be 
higher than for inçerfect shells. 

It is evident that considerable experimentation is necessary in both 

the elastic and inelastic ranges before the collapse strength of spherical 

shells may be predicted with the high degree of accuracy nomall, required 

for the design of undersea vehicles, first, tests of accurately fabricated 

ull spherical shells or deep spherical shells with ideal boundaries are 

needed to provide a reference. Then, tests of shells more representative 

of those encountered in engineering practice should be conducted to evaluate 

the weakening effects of initial inperfections, residual stresses, mtd adverse 
boundary conditions. 

The series of tests described herein was designed to investigate the 

strength of accurately fabricated deep spherical shells with ideal boundaries 

and to provide a foundation for future experimental as well as theoretical 
treatment of the strength of spherical shells. 

DESCRIPTION OF MODELS 

Twenty-six structural models, consisting of hemispherical shells each 

ounded by a ring-stiffened cylinder, were machined from alumimum alloy bar 

Stock. Thirteen models were machined from 6061-T6 alumimum alloy with a 

nominal yield strength of 43,000 psi and 13 models were machined from 7075-T6 

alloy with a nominal yield strength of 80,000 psi. Young-s modulus E for 

both materials, as detemined by optical strain-gage measurements, was 

.8 X 10 psi. A Poisson’s ratio v „f 0.3 in the elastic range was assumed, 

e gives the nominal model dimensions, and Table 2 presents the measured 

hicknesses of the hemispherical shells of each model. Figure 1 shows typical 

stress-strain curves for the material used. The ratios of secant modulus 

E and tangent modulus Et to Young’s modulus at various stress levels for 
t e material used in each model are presented in Table 3. 
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TABLE 1 

Nominal Model Dimensions 

!_1 

Model 
Aluminum 

Alloy 
h 

in. 
6 

in. 
6/2 
in. 

l 

in. 
* «oc 

in. 
2*0/ 

in. 
Number 

of 'Ts" 

A 
B 
C 
D 
E 
F 
G 
H 
1 
II 
J 
K 
L 

60( )M6 0.0098 
0.0100 
0.0202 
0.0202 
0.0341 
0.0345 
0.0494 
0.0494 
0.062 
0.066 
0.064 
0.079 
0.081 

0.056 
0.056 
0.080 
0.080 
0.106 
0.106 
0.128 
0.128 
0.148 
0.148 
0.148 
0.344 
0.344 

0.028 
0.028 
0.040 
0.0 Í0 
0.053 
0.053 
0.064 
0.064 
0.074 
0.074 
0.074 
0.172 
0.172 

0.056 
0.056 
0.080 
0.080 
0.106 
0.106 
0.128 
0.128 
0.148 
0.148 
0.148 
0.172 
0.172 

1.616 
1.616 
1.639 
1.639 
1.674 
1.674 
1.709 
1.709 
1.747 
1.747 
1.747 
1.800 
1.800 

1.670 
1.670 
1.749 
1.749 
1.890 
1.890 
2.039 
2.039 
2.245 
2.245 
2.245 
2.230 
2.230 

4 
4 
9 
9 
7 
7 
6 
6 
6 
6 
6 
3 
3 

M 
N 
0 
00 
P 
Q 
R 
S 
T 
U 
V 
w 
X 

707 9-T6 

« 

0.0076 
0.0077 
0.0100 
0.0096 
0.0106 
0.0190 
0.0195 
0.0335 
0.0345 
0.0490 
0.0498 
0.064 
0.064 

0.047 
0.047 
0.056 
0.056 
0.056 
0.080 
0.080 
0.106 
0.106 
0.128 
0.128 
0.148 
0.148 

0.024 
0.024 
0.028 
0.028 
0.028 
0.040 
0.040 
0.053 
0.053 
0.064 
0.064 
0.074 
0.074 

0.047 
0.047 
0.056 
0.056 
0.056 
0.080 
0.080 
0.106 
0.106 
0.126 
0.128 
0.148 
0.148 

1.6?0 
1.630 
1.616 
1.630 
1.616 
1.639 
1.639 
1.674 
1.674 
1.709 
1.709 
1.747 
1.747 

1.667 
1.667 
1.670 
1.700 
1.670 
1.749 
1.7490 
1.890 
1.890 
2.039 
2.039 
2.245 
2.245 

4 
4 
4 
4 
4 
9 
9 
7 
7 
6 
6 
6 
6 

5 



TABLE 2 

Maximum and Minimum Measured Hemispherical Wall Thicknesses 

Model 
Hemispherical Wall Thickness in Inches 

A B C D 
Maiimum Minimum Maximum Minimum Maximum Minimum 

A 
B 
C 
0 
E 
F 
G 
H 
1 
II 
J 
K 
L 

0.0098 
0.0101 
0.0200 
0.0200 
0.0350 
0.0350 
0.0502 
0.0502 
0.063 
0.066 
0.064 
0.079 
0.080 

0.0098 
0.0102 
0.0206 
0.0205 
0.0332 
0.0345 
0.0495 
0.0495 
0.062 
0.066 
0.064 
0.079 
0.081 

0.0096 
0.0100 
0.0205 
0.0200 
0.0332 
0.0338 
0.0493 
0.0493 
0.062 
0.066 
0.064 
0.078 
0.081 

0.0100 
0.0102 
0.0205 
0.0202 
0.0345 
0.0351 
0.0495 
0.0495 
0.062 
0.067 
0.064 
0.082 
0.082 

0.0097 
0.0098 
0.0200 
0.0200 
0.0341 
0.0348 
0.0493 
0.0493 
0.062 
0.067 
0.064 
0.082 
0.082 

0.0102 
0.0113 
0.0206 
0.0200 
0.0350 
0.0352 
0.0510 
0.0500 
0.065 
0.068 
0.065 
0.083 
0.083 

0.0097 
0.0110 
0.0200 
0.0195 
0.0345 
0.0352 
0.0500 
0.0496 
0.065 
0.068 
0.065 
0.082 
0.083 

M 
N 
0 
00 
P 
Q 
R 
S 
T 
U 
V 
w 
X 

0.0079 
0.0075 
0.0100 
0.0094 
0.0101 
0.0190 
0.0200 
0.0340 
0.0350 
0.0496 
0.0504 
0.065 
0.065 

0.0075 
0.0078 
0.0099 
0.0100 
0.0112 
0.0192 
0.0192 
0.0338 
0.0340 
0.0488 
0.0495 
0.063 
0.063 

0.0073 
0.0078 
0.0098 
0.0100 
0.0111 
0.0186 
0.0190 
0.0325 
0.0338 
0.0480 
0.0490 
0.063 
0.063 

0.0081 
0.0081 
0.0108 
0.0095 
0.0115 
0.0211 
0.0205 
0.0338 
0.0352 
0.0496 
0.0510 
0.064 
0.064 

0.0072 
0.0073 
0.0105 
0.0094 
0.0119 
0.0205 
0.0202 
0.0332 
0.0350 
0.0494 
0.0505 
0.064 
0.064 

0.0078 
0.0087 
0.0109 
0.0103 
0.0111 
0.0215 
0.205 
0.0338 
0.0356 
0.0499 
0.0519 
0.067 
0.066 

0.0066 
0.0083 
0.0105 
0.0097 
0.0111 
0.0209 
0.0198 
0.0335 
0.0354 
0.0496 
0.0515 
0.067 
0.066 
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la - 6061 - T6 Aluminum Alloy 

lb - 7075 - 16 Aluminum Alloy 

Figure 1 - Typical Stress-Strain Curves for Material Used 
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Each model was machined in an identical manner. First, the inside contour 

was machined by using a form tool; then, the exterior surface of each spherical 

shell was obtained by using a lathe with a ball-turning attachment. Finally, 

the exterior surface of the ring-stiffened cylinder was machined. 

The stiffened cylindrical portions of all models except Models M, N, and 

00 were designed to provide conditions of membrane deflection and no rotation 

at the edge of their respective hemispherical ends. The cylinders of these 

models were considerably more rigid than the cylinders provided by those 

boundaries which give rise to membrane deformations. 

TEST PROCEMJRE AND RESULTS 

Each model was tested under external hydrostatic pressure. Pressure 

tanks of different sizes were used since the tests were conducted over a 

period of several months and no single facility was available throughout 

this time. Pressure was applied in increments and each new pressure level 

was held at least 1 min. The final pressure increment was normally less 

than 2 percent of the collapse pressure. Every effort was made to minimize 

any pressure surge when applying load. Some models failed under constant 

load whereas others collapsed while pressure was being applied. 

Table 4 presents the experimental collapse pressures. Photographs of 

the models after collapse are shown in Figure 2. Model E could not be located 

after the test and, consequently, is not shown in Figure 2. 

DISCUSSION 

ELASTIC-INSTABILITY MODELS 

The experimental collapse pressures of Models M, N, 0, 00, and P, which 

collapsed at stress levels well within the elastic range of the material, 

are compared with the classical linear theory of Zoelly in Table 5. The 

ratios of experimental collapse pressure to theoretical collapse pressure 

shown in Table 5 are from two to three times greater than the ratios obtained 

in previous experiments by Sechler and Bollay and by Klöppel and Jungbluth.^ 

This confirms the suspicion that the low values of previously observed collapse 

pressure were caused mainly by initial imperfections, residual stresses, and 

adverse boundary conditions. 
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TABLE 4 

Experimental Collapse Pressures 

Model 

Experimental Collapse Pressure, 

PEXP 

psi 

A 

B 

C 

D 

E 

F 

G 

H 

V 

K 

L 

890 

935 

1,810 

1,790 

3,350 

3,375 

4,950 

5,150 

5,900 

6,300 

6,450 

8,200 

8,200 

M 

N 

0 

00 

P 

Q 
R 

S 

T 

U 

V 

W 

X 

800 

830 

1,170 

1,230 

1,215 

3,160 

3,280 

5,875 

6,200 

9,050 

9,300 

12,200 

12,150 
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TABLE 5 

Comparison of Exporimontal Elastic Collapse Pressures 

with Classical Theory 

Model 

Experimental 
Collapse 
Pressure, 

PEXP 

psi 

Average Shell 
Thickness, 

h 

in. 

Mean Radius, 
R 

in. 

Theoretical 
Collapse 
Pressure, 

Pp 1.21E(h/R)2 

psi 

PEXP 

P1 

M 800 0.0076 0.800 1180 0.68 
N 830 0.0077 0.801 1210 0.69 
0 1170 0.0100 0.802 2030 0.58 

00 1230 0.0096 0.801 1875 0.66 
P 1215 0.0106 0.802 2285 0.53 

The machining of the shells in this series assured near perfect sphericity. 

Small initial departures from a true radius of curvature were observed in 

models tested by Klöppel and Jungbluth. Unfortunately, very little information 

on the model tested by Sechler and Bollay can be found in the literature. 

Although every effort was made to minimize variations in shell thickness for 

the series of models described herein, small variations were found to be 

unavoidable (see Table 2). The deviations in thickness from a mean value, 

however, were considerably less than the maximum value of 10 percent present 
in the models of Klöppel and Jungbluth. 

Residual machining stresses were present since the models were not stress- 

relieved, but they are considered negligible. Appreciable residual stresses 

were present in the models reported in Reference 3 which were cold-formed. 

The collapse strength of the spherical portion of Models M, N, and 00 was 

not influenced by boundary conditions because their collapse occurred away 

from the boundaries. This indicated that the overdesign of the cylinder did 

not create serious edge effects. The definite lobar pattern shown by Models 

0 and P after collapse suggested that the insufficient strength of their 

boundary' cylinders lowered the collapse strength of thier spherical portion. 

This lobar pattern is typical of the general-instability collapse mode of 

cylinder and head. Unfortunately, there is no theory available to evaluate 
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the overall stability strength of these models and its effect on the collapse 

strength of the spherical portion. The strength of the deep spherical shells 

tested by Klöppel and Jungbluth was affected by the boundary conditions since 

collapse was initiated in the shell adjacent to the rigid support. 

The experimental collapse strength of Models M, N, and 00 was about 70 

percent of the strength predicted by Zoelly. Because each Model tested had 

small deviations in shell thickness, this series of tests does not demonstrate 

conclusively the maximum elastic collapse strength of perfect spherical shells. 

These tests do show, however, that the lower buckling loads predicted by 

Von Karman and Tsien may be greatly exceeded if the spherical shells are 

constructed with sufficient care and if, in the case of imcomplete spherical 

shells, satisfactory boundaries are provided. It should be remembered that 

Von Karrnan and Tsien considered their analysis applicable to shells with initial 

imperfections and, therefore, it is not surprising that the collapse strength 

of machined models should exceed that predicted by their analysis. To investi¬ 

gate further the maximum elastic buckling pressure attainable by experiment, 

it appears advantageous to test larger machined models in which unavoidable 

small variations in shell thickness would not be as critical. 

INELASTIC-INSTABILITY MODELS 

Table 6 compares the experimental collapse pressures for this series with 

the collapse pressures obtained from the inelastic-buckling solutions of 
8 9 10 Bijlaard, Gerard, and Lunchick and from an empirical formula. The collapse 

pressures obtained from each of the solutions of Bijlaard, Gerard, and 

Lunchick may be expressed in the general form: 

PB,G,L = P1 [5] 

--It is interesting to note that in Reference 5, Dr. Friedrichs solved the 
nonlinear problem based on a ,Tboundary-layer theory’' and obtained results 
which are in rather good agreement with this series of tests. His analysis, 
together with the analysis of Von Kaiman and Tsien, assumes that the shell 
is deflected only parallel to the radial axis of symmetry. Unfortunately, 
Friedrichs proceeded to demonstrate that placing this restriction on defor¬ 
mations is in error and that, in the limiting linear case, it doubles the 
Zoelly load. By removing this restriction, Friedrichs obtained Zoelly’s 
equation for the linear case but failed to obtain a solution for the non- 
linear case. 
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where T] is commonly called the plasticity reduction factor and is the 

classical small deflection buckling pressure. The solution of Bijlaard is 

identical to that of Gerard for Poisson's ratio in the plastic range v 

of 0.5. Their reduction factor TI^q may then be defined as 

r i1/2 
I,G = [ i1-”2)/^ )J (Es/e) (Et/Es) 

1/2 

[6] 

and their solution for the collapse pressure pD then becomes 
B ju 

, G =1.1541/^1 

' Ml-up2) 'R' 
[7] 

Lunchick considered a variable Poisson's ratio in the plastic range. 

His reduction factor T1 may be defined as 

[ (i-»2)/(i-i>t)(i+i>s) 1 [8] 

where 

and 

and his solution for the 

“t = 1/2-(1/2-0)^ 

o. = 1/2-(1/2-o)Es/e 

collapse pressure p^ becomes 

PL = 1.1541 
Es Et 

(l-ut)(l+u ) 
[9] 
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For this series of tests there is no significant difference between the 

pressures obtained from Equations [7] and [9]; each gives pressures some¬ 

what greater than those observed; see Table b. These results appear to 

have been anticipated by both Gerard and Lunchick^^ since each suggested 

that his reduction factor could also be used to modify large deflection 

theory in the inelastic region and thereby obtain somewhat lower collapse 

pressures. Unfortunately, in the elastic region no reliable large deflection 

theory appears to be available for the geometries studied. 

The empirical method, also used in Table b to predict collapse pressures, 

is derived as follows: If the average tangential buckling stress aAVE is 
defined from equilibruim as 

where Rq is the radius to the outer surface of the shell, the observed elastic 

collapse strengths of Models M, N, and 00 may be approximated by 

2 n 8 

[11] 

When the effects of a variable Poisson’s ratio are neglected and the simple 

reduction factor 

is assumed, 
[12] 

an empirical expression for the inelastic collapse pressure p^, may be given 

in the same form as Equation [5]; namely, 

[13] 

lb 



or 

P E 
[14] 

Table 6 shows that the experimental results are in good agreement with those 

calculated by using Equation [14], 

Since the only difference between yo T)L and T1E is the treatment of 

Poisson’s ratio in the plastic range, it is apparent that similar results 

would be obtained if p3 were substituted for p1 in Equation [5], It is 

significant that for this series of tests, which covers thickness to radius 

ratios from about 1/10 to 1/100,the elastic-buckling coefficient remains con¬ 

stant. This is in total agreement with the existing inelastic theories.8,9,10 

Therefore, the cause for disagreement between this series of tests and existing 

inelastic theory can be attributed to the magnitude of the constant elastic- 

buckling ceofficient. Specifically, for an elastic Poisson’s ratio of 0.3, 

the elastic-buckling coefficient of about 0.84 is obtained for this series 

of experiments; whereas each available inelastic theory assumes the classical 

elastic-buckling coefficient of 1.21; see Equations [3] and [5]. 
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TABLE 6 

Comparison of Experimental Collapse Pressures with Inelastic Theory 

* 
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APPLICATION OF TEST RESULTS 

The results of these tests will probably be of little direct value to 

the naval architect since it is not practical to machine most spherical 

shells encountered in engineering practice. All but a few of the smaller 

shells will probably be formed by spinning or by pressing segments to the 

proper shape and then welding them together. In either case, considerable 

departure from sphericity will exist, although in this series of models good 

sphericity was assured because of machining the contours. Large variations 

in thickness can also be expected in practice, particularly if the shells 

are formed by spinning. Spherical shells formed by spinning or pressing will 

also have considerable residual stresses unless stress-relieved and not 

entirely uniform yield strengths. These residual stresses will cause early 

inelastic behavior in the shell which will, in turn, lower the collapse 

strength. Furthermore, ideal boundary conditions are not practical for 

many deep spherical shells. An example of this impracticality is the normally 

unacceptable weight penalty imposed by providing ideal boundaries for a hemi¬ 

sphere used to close off the end of a cylindrical hull. This penalty is due 

to the appreciably greater radial deflection of a cylinder when compared to 

a sphere operating at similar stress levels. In practice, most spherical 

shells will have penetrations. However, their effect on collapse strength 
has not been considered in these tests. 

These tests are valuable, however, because they demonstrate the collapse 

pressures that can be expected for accurately machined spherical shells. 

In this respect, they may be considered as an upper bound for experimental 

collapse pressures. Therefore, they can serve as a reference to which future 

tests on spun or pressed spherical shells may be compared to determine the 

detrimental effects of initial, departures from sphericity, variations in 

shell thicknesses, residual stresses, adverse boundary conditions, and 
penetrations. 

CONCLUSIONS 

The following conclusions are made concerning the hydrostatic strength 
of the spherical portions of the models tested: 

1. The ratios of experimental elastic collapse pressure to the pressure 

obtained from the classical linear theory of Zoelly were from two to three 
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times greater than the ratios for previous tests recorded in the literature. 

This large increase was achieved by machining the shells rather than by 

forming them from a flat plate and by eliminating adverse boundary conditions. 

2. The observed collapse pressures in the elastic range could not be 

predicted by either the classical linear theory of Zoelly or any of the 

available large deflection theories. The maximum collapse pressure obtained 

was about 70 percent of the pressure predicted by Zoelly. 

3. For each model tested, the available theories of inelastic instability 

of Bijlaard, Gerard, and Lunchick gave collapse pressures higher than the 

corresponding experimental collapse pressures, 

4. The collapse strength of those models which failed at stress levels 

above the proportional limit may be predicted by an empirical formula based 

on the observed, collapse strength of the elastic models and a plasticity 

reduction factor similar to that developed in existing theory. 

RECOMMENDATIONS 

1. Tests of spherical shells formed both by spinning and by pressing 

should be conducted to evaluate the effects of initial imperfections and 

residual stresses on collapse strength. 

2. The effect of boundary conditions and penetration on the collapse 

strength of spherical shells should be investigated. 

e 
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APPENDIX 

OBSERVATIONS ON PLASTIC SPHERES UNDER UNIFORM PRESSURE 

Prior to this present work, two small plastic spheres were collapsed 

under external pressure. The objectives of these exploratory tests were to 

investigate the applicability of Tsiens "energy criterion of jump" and to 

obtain high-speed photographs of the collapse of spherical shells. 

In the first experiment, a plastic sphere was subjected to alternating 

static loads of hydrostatic and air pressure to determine whether the energy 

in the pressure vessel influences collapse pressure, as implied by the theory 

of Tsien. The vessel in which hydrostatic pressure was applied was shaped 

to provide a minimum volume of water between the sphere and the wall of the 

vessel; see Figure 3. The volume of the vessel in which air pressure was 

^Plied was about 1000 times the volume of the other vessel; thus, it ap¬ 

proached the "dead load" condition. Since the test was not intended for 

quantitative evaluation, no measurements of geometric or physical properties 

were made. The loading sequence and test results are shown in Table 7. 

A second plastic sphere was subjected to external hydrostatic pressure 

in the vessel shown in Figure 3, and a high-speed camera operating at an 

approximate rate of 3000 frames per second was used to record the collapse 

mechanism. Difficulty in synchronizing the camera with the collapse of the 

sphere was anticipated. Therefore, a similar sphere was first collapsed 

and the buckling pressure was noted. Then the new sphere was placed in the 

test tank and subjected to a pressure slightly below the critical pressure. 

As the camera was started, additional pressure was applied to the sphere so 

that it collapsed while the camera was running. Figure 4 shows photographs 

of six consecutive frames covering a time period of about 0.002 second. 

The following observations were made during the rather crude exploratory 
tests just described. 

1. The collapse strength of the first plastic sphere, when tested in 

the small vessel under hydrostatic pressure, was not appreciably greater 

than its strength in a relative large vessel under air pressure. 

2. The collapse of the second sphere began as a small inward dimple 

and reached its post-buckling configuration very rapidly. 
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The first observation suggests that the collapse strength of complete 

spherical shells is not dependent on the volume or energy of the pressure 

vessel as implied by Tsien.7 The fact that the collapse of the second sphere 

began as a single, small, inward dimple indicates that collapse strength is 

influenced by local effects of initial departures from sphericity, non uniform 

wall thickness, residual stresses due to fabrication, and, in the case of 

incomplete spheres, the effects of edge conditions. Outside dynamic disturb¬ 

ances may also have an effect on the collapse strength observed under normal 

laboratory, conditions, but it seems likely that this effect is small. 

Hgure 3 - Pressure Vessel Used for Applying Hydrostatic Pressure 
to Plastic Spheres 
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TABLE 7 

Summary of Static Tests of a Small Plastic Sphere Under External Pressure 

Load Number Pressure Medium Maximum Pressure 
psi 

; Remarks 

1 Water 50 Maximum pressure held 1 min. 
No drop in pressure observed. 

2 Air 50 Maximum pressure held 1 min. 
No drop in pressure observed. 

3 

Water 52 1/2 Collapsed after holding maxi¬ 
mum pressure for 10 sec. A 
residual pressure of 13 psi 
was observed after collapse. 

4 Water 40 Maximum pressure held 1 min. 
No drop in pressure observed. 

5 Air 40 Maximum pressure held 1 min. 
No drop in pressure observed. 

b Water 42 1/2 Maximum pressure held 1 min. 
No drop in pressure observed. 

7 Air 42 1/2 Maximum pressure held 1 min. 
No drop in pressure observed. 

8 

Water 43 Collapsed while applying pres¬ 
sure. A residual pressure of 
14 psi was observed after 
collapse. 

9 Air 45 Collapsed and ruptured while 
applying pressure. 
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O + 2/3OOO soo 0 + \/3000 soc 

0 + 4/3OOO soc 

Figure 4 - High-Speed Photographs of the Buckling of a Plastic Sphere 
under Hydrostatic Pressure 
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